МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Ставропольского края

Отдел образования администрации Красногвардейского

муниципального округа

МКОУ СОШ № 11

РАССМОТРЕНО

Kepul

на заседании МО учителей эстественносоциального цикла Руководитель МО

Протокол № 1 от «28» августа 2023 г.

Черкасова Е.А.

СОГЛАСОВАНО

заместитель директора

по УВР

Польшина В.П.

Протокол № 1 от «29» августа 2023 г.

УТВЕРЖДЕНО

Директор МКОУСОШ №11

Брусенская А.В.

Приказ № 156 от «30 » августа.

от «э г

РАБОЧАЯ ПРОГРАММА

(ID 3121242)

учебного предмета «Технология»

для обучающихся 5 – 9 классов

с. Красногвардейское 2023.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по технологии интегрирует знания по разным учебным предметам и является одним из базовых для формирования у обучающихся функциональной грамотности, технико-технологического, проектного, креативного и критического мышления на основе практико-ориентированного обучения и системно-деятельностного подхода в реализации содержания.

Программа по технологии знакомит обучающихся с различными технологиями, в том числе материальными, информационными, коммуникационными, когнитивными, социальными. В рамках освоения программы по технологии происходит приобретение базовых навыков работы с современным технологичным оборудованием, освоение современных технологий, знакомство с миром профессий, самоопределение и ориентация обучающихся в сферах трудовой деятельности.

Программа по технологии раскрывает содержание, адекватно отражающее смену жизненных реалий и формирование пространства профессиональной ориентации и самоопределения личности, в том числе: компьютерное черчение, промышленный дизайн, 3D-моделирование, прототипирование, технологии цифрового производства в области обработки материалов, аддитивные технологии, нанотехнологии, робототехника и системы автоматического управления; технологии электротехники, электроники и электроэнергетики, строительство, транспорт, агро- и биотехнологии, обработка пищевых продуктов.

Программа по технологии конкретизирует содержание, предметные, метапредметные и личностные результаты.

Стратегическими документами, определяющими направление модернизации содержания и методов обучения, являются ФГОС ООО и Концепция преподавания предметной области «Технология».

Основной целью освоения технологии является формирование технологической грамотности, глобальных компетенций, творческого мышления.

Задачами курса технологии являются:

овладение знаниями, умениями и опытом деятельности в предметной области «Технология»;

овладение трудовыми умениями и необходимыми технологическими знаниями по преобразованию материи, энергии и информации в соответствии с поставленными целями, исходя из экономических, социальных, экологических, эстетических критериев, а также критериев личной и общественной безопасности;

формирование у обучающихся культуры проектной и исследовательской деятельности, готовности к предложению и осуществлению новых технологических решений;

формирование у обучающихся навыка использования в трудовой деятельности цифровых инструментов и программных сервисов, когнитивных инструментов и технологий;

развитие умений оценивать свои профессиональные интересы и склонности в плане подготовки к будущей профессиональной деятельности, владение методиками оценки своих профессиональных предпочтений.

Технологическое образование обучающихся носит интегративный характер и строится на неразрывной взаимосвязи с трудовым процессом, создаёт возможность преобразовательной применения научно-теоретических знаний В продуктивной деятельности, включения обучающихся в реальные трудовые отношения в процессе созидательной деятельности, воспитания культуры личности во всех её проявлениях (культуры труда, эстетической, правовой, экологической, технологической и других ее проявлениях), самостоятельности, инициативности, предприимчивости, развитии компетенций, позволяющих обучающимся осваивать новые виды труда и готовности принимать нестандартные решения.

Основной методический принцип программы по технологии: освоение сущности и структуры технологии неразрывно связано с освоением процесса познания — построения и анализа разнообразных моделей.

Программа по технологии построена по модульному принципу.

Модульная программа по технологии — это система логически завершённых блоков (модулей) учебного материала, позволяющих достигнуть конкретных образовательных результатов, предусматривающая разные образовательные траектории её реализации.

Модульная программа включает инвариантные (обязательные) модули и вариативные.

ИНВАРИАНТНЫЕ МОДУЛИ ПРОГРАММЫ ПО ТЕХНОЛОГИИ

Модуль «Производство и технологии»

Модуль «Производство и технологии» является общим по отношению к другим модулям. Основные технологические понятия раскрываются в модуле в системном виде, что позволяет осваивать их на практике в рамках других инвариантных и вариативных модулей.

Особенностью современной техносферы является распространение технологического подхода на когнитивную область. Объектом технологий становятся фундаментальные составляющие цифрового социума: данные, информация, знание. Трансформация данных в информацию и информации в знание в условиях появления феномена «больших данных» является одной из значимых и востребованных в профессиональной сфере технологий.

Освоение содержания модуля осуществляется на протяжении всего курса технологии на уровне основного общего образования. Содержание модуля построено на основе последовательного знакомства обучающихся с технологическими процессами, техническими системами, материалами, производством и профессиональной деятельностью.

Модуль «Технологии обработки материалов и пищевых продуктов»

В модуле на конкретных примерах представлено освоение технологий обработки материалов единой схеме: историко-культурное значение материала, экспериментальное изучение свойств материала, инструментами, знакомство \mathbf{c} безопасного обработки, организация рабочего технологиями места, правила приспособлений, использования инструментов экологические последствия материалов и применения технологий, а также характеризуются использования профессии, непосредственно связанные с получением и обработкой данных материалов. Изучение материалов и технологий предполагается в процессе выполнения учебного

проекта, результатом которого будет продукт-изделие, изготовленный обучающимися. Модуль может быть представлен как проектный цикл по освоению технологии обработки материалов.

Модуль «Компьютерная графика. Черчение»

В рамках данного модуля обучающиеся знакомятся с основными видами и областями применения графической информации, с различными типами графических изображений и их элементами, учатся применять чертёжные инструменты, читать и выполнять чертежи на бумажном носителе с соблюдением основных правил, знакомятся с инструментами и условными графическими обозначениями графических редакторов, учатся создавать с их помощью тексты и рисунки, знакомятся с видами конструкторской документации и графических моделей, овладевают навыками чтения, выполнения и оформления сборочных чертежей, ручными и автоматизированными способами подготовки чертежей, эскизов и технических рисунков деталей, осуществления расчётов по чертежам.

Приобретаемые в модуле знания и умения необходимы для создания и освоения новых технологий, а также продуктов техносферы, и направлены на решение задачи укрепления кадрового потенциала российского производства.

Содержание модуля «Компьютерная графика. Черчение» может быть представлено, в том числе, и отдельными темами или блоками в других модулях. Ориентиром в данном случае будут планируемые предметные результаты за год обучения.

Модуль «Робототехника»

В модуле наиболее полно реализуется идея конвергенции материальных и информационных технологий. Значимость данного модуля заключается в том, что при его освоении формируются навыки работы с когнитивной составляющей (действиями, операциями и этапами).

Модуль «Робототехника» позволяет в процессе конструирования, создания действующих моделей роботов интегрировать знания о технике и технических устройствах, электронике, программировании, фундаментальные знания, полученные в рамках учебных предметов, а также дополнительного образования и самообразования.

Модуль «3D-моделирование, прототипирование, макетирование»

Модуль в значительной мере нацелен на реализацию основного методического принципа модульного курса технологии: освоение технологии идёт неразрывно с освоением методологии познания, основой которого является моделирование. При этом связь технологии с процессом познания носит двусторонний характер: анализ модели позволяет выделить составляющие её элементы и открывает возможность использовать технологический подход при построении моделей, необходимых для познания объекта. Модуль играет важную роль в формировании знаний и умений, необходимых для проектирования и усовершенствования продуктов (предметов), освоения и создания технологий.

ВАРИАТИВНЫЕ МОДУЛИ ПРОГРАММЫ ПО ТЕХНОЛОГИИ

Модуль «Автоматизированные системы»

Модуль знакомит обучающихся с автоматизацией технологических процессов на производстве и в быту. Акцент сделан на изучение принципов управления автоматизированными системами и их практической реализации на примере простых

технических систем. В результате освоения модуля обучающиеся разрабатывают индивидуальный или групповой проект, имитирующий работу автоматизированной системы (например, системы управления электродвигателем, освещением в помещении и прочее).

Модули «Животноводство» и «Растениеводство»

Модули знакомят обучающихся с традиционными и современными технологиями в сельскохозяйственной сфере, направленными на природные объекты, имеющие свои биологические пиклы.

В курсе технологии осуществляется реализация межпредметных связей:

- с алгеброй и геометрией при изучении модулей «Компьютерная графика. Черчение», «3D-моделирование, прототипирование, макетирование», «Технологии обработки материалов и пищевых продуктов»;
- с химией при освоении разделов, связанных с технологиями химической промышленности в инвариантных модулях;
- с биологией при изучении современных биотехнологий в инвариантных модулях и при освоении вариативных модулей «Растениеводство» и «Животноводство»;
- с физикой при освоении моделей машин и механизмов, модуля «Робототехника», «3D-моделирование, прототипирование, макетирование», «Технологии обработки материалов и пищевых продуктов»;
- с информатикой и информационно-коммуникационными технологиями при освоении в инвариантных и вариативных модулях информационных процессов сбора, хранения, преобразования и передачи информации, протекающих в технических системах, использовании программных сервисов;
- с историей и искусством при освоении элементов промышленной эстетики, народных ремёсел в инвариантном модуле «Производство и технологии»;
- с обществознанием при освоении темы «Технология и мир. Современная техносфера» в инвариантном модуле «Производство и технологии».

Общее число часов, рекомендованных для изучения технологии, в 9 классе -34 часа (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ ИНВАРИАНТНЫЕ МОДУЛИ

Модуль «Производство и технологии»

9 КЛАСС

Предпринимательство. Сущность культуры предпринимательства. Корпоративная культура. Предпринимательская этика. Виды предпринимательской деятельности. Типы организаций. Сфера принятия управленческих решений. Внутренняя и внешняя среда предпринимательства. Базовые составляющие внутренней среды. Формирование цены товара.

Внешние и внутренние угрозы безопасности фирмы. Основные элементы механизма защиты предпринимательской тайны. Защита предпринимательской тайны и обеспечение безопасности фирмы.

Понятия, инструменты и технологии имитационного моделирования экономической деятельности. Модель реализации бизнес-идеи. Этапы разработки бизнес-проекта: анализ

выбранного направления экономической деятельности, создание логотипа фирмы, разработка бизнес-плана.

Эффективность предпринимательской деятельности. Принципы и методы оценки. Контроль эффективности, оптимизация предпринимательской деятельности. Технологическое предпринимательство. Инновации и их виды. Новые рынки для продуктов.

Модуль «Робототехника»

9 КЛАСС

Робототехнические системы. Автоматизированные и роботизированные производственные линии.

Система интернет вещей. Промышленный интернет вещей.

Потребительский интернет вещей. Элементы «Умного дома».

Конструирование и моделирование с использованием автоматизированных систем с обратной связью.

Составление алгоритмов и программ по управлению беспроводными роботизированными системами.

Протоколы связи.

Перспективы автоматизации и роботизации: возможности и ограничения.

Профессии в области робототехники.

Научно-практический проект по робототехнике.

Модуль «3D-моделирование, прототипирование, макетирование» 9 КЛАСС

Моделирование сложных объектов. Рендеринг. Полигональная сетка.

Понятие «аддитивные технологии».

Технологическое оборудование для аддитивных технологий: 3D-принтеры.

Области применения трёхмерной печати. Сырьё для трёхмерной печати.

Этапы аддитивного производства. Правила безопасного пользования 3D-принтером. Основные настройки для выполнения печати на 3D-принтере.

Подготовка к печати. Печать 3D-модели.

Профессии, связанные с 3D-печатью.

Модуль «Компьютерная графика. Черчение»

9 КЛАСС

Система автоматизации проектно-конструкторских работ — САПР. Чертежи с использованием в системе автоматизированного проектирования (САПР) для подготовки проекта изделия.

Оформление конструкторской документации, в том числе, с использованием систем автоматизированного проектирования (САПР).

Объём документации: пояснительная записка, спецификация. Графические документы: технический рисунок объекта, чертёж общего вида, чертежи деталей. Условности и упрощения на чертеже. Создание презентации.

Профессии, связанные с изучаемыми технологиями, черчением, проектированием с использованием САПР, их востребованность на рынке труда.

ВАРИАТИВНЫЕ МОДУЛИ

Модуль «Автоматизированные системы»

8-9 КЛАССЫ

Введение в автоматизированные системы.

Определение автоматизации, общие принципы управления технологическим процессом. Автоматизированные системы, используемые на промышленных предприятиях региона.

Управляющие и управляемые системы. Понятие обратной связи, ошибка регулирования, корректирующие устройства.

Виды автоматизированных систем, их применение на производстве.

Элементная база автоматизированных систем.

Понятие об электрическом токе, проводники и диэлектрики. Создание электрических цепей, соединение проводников. Основные электрические устройства и системы: щиты и оборудование щитов, элементы управления и сигнализации, силовое оборудование, кабеленесущие системы, провода и кабели. Разработка стенда программирования модели автоматизированной системы.

Управление техническими системами.

Технические средства и системы управления. Программируемое логическое реле в управлении и автоматизации процессов. Графический язык программирования, библиотеки блоков. Создание простых алгоритмов и программ для управления технологическим процессом. Создание алгоритма пуска и реверса электродвигателя. Управление освещением в помещениях.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ТЕХНОЛОГИИ НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения технологии на уровне основного общего образования у обучающегося будут сформированы следующие личностные результаты в части:

1) патриотического воспитания:

проявление интереса к истории и современному состоянию российской науки и технологии;

ценностное отношение к достижениям российских инженеров и учёных.

2) гражданского и духовно-нравственного воспитания:

готовность к активному участию в обсуждении общественно значимых и этических проблем, связанных с современными технологиями, в особенности технологиями четвёртой промышленной революции;

осознание важности морально-этических принципов в деятельности, связанной с реализацией технологий;

освоение социальных норм и правил поведения, роли и формы социальной жизни в группах и сообществах, включая взрослые и социальные сообщества.

3) эстетического воспитания:

восприятие эстетических качеств предметов труда;

умение создавать эстетически значимые изделия из различных материалов;

понимание ценности отечественного и мирового искусства, народных традиций и народного творчества в декоративно-прикладном искусстве;

осознание роли художественной культуры как средства коммуникации и самовыражения в современном обществе.

4) ценности научного познания и практической деятельности:

осознание ценности науки как фундамента технологий;

развитие интереса к исследовательской деятельности, реализации на практике достижений науки.

5) формирования культуры здоровья и эмоционального благополучия:

осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасной работы с инструментами;

умение распознавать информационные угрозы и осуществлять защиту личности от этих угроз.

6) трудового воспитания:

уважение к труду, трудящимся, результатам труда (своего и других людей);

ориентация на трудовую деятельность, получение профессии, личностное самовыражение в продуктивном, нравственно достойном труде в российском обществе;

готовность к активному участию в решении возникающих практических трудовых дел, задач технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такого рода деятельность;

умение ориентироваться в мире современных профессий;

умение осознанно выбирать индивидуальную траекторию развития с учётом личных и общественных интересов, потребностей;

ориентация на достижение выдающихся результатов в профессиональной деятельности.

7) экологического воспитания:

воспитание бережного отношения к окружающей среде, понимание необходимости соблюдения баланса между природой и техносферой;

осознание пределов преобразовательной деятельности человека.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения технологии на уровне основного общего образования у обучающегося будут сформированы универсальные познавательные учебные действия, универсальные регулятивные учебные действия, универсальные коммуникативные учебные действия.

Универсальные познавательные учебные действия

Базовые логические действия:

выявлять и характеризовать существенные признаки природных и рукотворных объектов;

устанавливать существенный признак классификации, основание для обобщения и сравнения;

выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к внешнему миру;

выявлять причинно-следственные связи при изучении природных явлений и процессов, а также процессов, происходящих в техносфере;

самостоятельно выбирать способ решения поставленной задачи, используя для этого необходимые материалы, инструменты и технологии.

Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания;

формировать запросы к информационной системе с целью получения необходимой информации;

оценивать полноту, достоверность и актуальность полученной информации;

опытным путём изучать свойства различных материалов;

овладевать навыками измерения величин с помощью измерительных инструментов, оценивать погрешность измерения, уметь осуществлять арифметические действия с приближёнными величинами;

строить и оценивать модели объектов, явлений и процессов;

уметь создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

уметь оценивать правильность выполнения учебной задачи, собственные возможности её решения;

прогнозировать поведение технической системы, в том числе с учётом синергетических эффектов.

Работа с информацией:

выбирать форму представления информации в зависимости от поставленной задачи; понимать различие между данными, информацией и знаниями;

владеть начальными навыками работы с «большими данными»;

владеть технологией трансформации данных в информацию, информации в знания.

Регулятивные универсальные учебные действия

Самоорганизация:

уметь самостоятельно определять цели и планировать пути их достижения, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

уметь соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

делать выбор и брать ответственность за решение.

Самоконтроль (рефлексия):

давать адекватную оценку ситуации и предлагать план её изменения;

объяснять причины достижения (недостижения) результатов преобразовательной деятельности;

вносить необходимые коррективы в деятельность по решению задачи или по осуществлению проекта;

оценивать соответствие результата цели и условиям и при необходимости корректировать цель и процесс её достижения.

Умения принятия себя и других:

признавать своё право на ошибку при решении задач или при реализации проекта, такое же право другого на подобные ошибки.

Коммуникативные универсальные учебные действия

У обучающегося будут сформированы умения *общения* как часть коммуникативных универсальных учебных действий:

в ходе обсуждения учебного материала, планирования и осуществления учебного проекта;

в рамках публичного представления результатов проектной деятельности;

в ходе совместного решения задачи с использованием облачных сервисов;

в ходе общения с представителями других культур, в частности в социальных сетях.

Совместная деятельность:

понимать и использовать преимущества командной работы при реализации учебного проекта;

понимать необходимость выработки знаково-символических средств как необходимого условия успешной проектной деятельности;

уметь адекватно интерпретировать высказывания собеседника – участника совместной деятельности;

владеть навыками отстаивания своей точки зрения, используя при этом законы логики;

уметь распознавать некорректную аргументацию.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Для всех модулей обязательные предметные результаты:

- организовывать рабочее место в соответствии с изучаемой технологией;
- соблюдать правила безопасного использования ручных и электрифицированных инструментов и оборудования;
- грамотно и осознанно выполнять технологические операции в соответствии с изучаемой технологией.

Предметные результаты освоения содержания **модуля** «**Производство и технологии**»

К концу обучения в 9 классе:

перечислять и характеризовать виды современных информационно-когнитивных технологий;

овладеть информационно-когнитивными технологиями преобразования данных в информацию и информации в знание;

характеризовать культуру предпринимательства, виды предпринимательской деятельности;

создавать модели экономической деятельности;

разрабатывать бизнес-проект;

оценивать эффективность предпринимательской деятельности;

характеризовать закономерности технологического развития цивилизации;

планировать своё профессиональное образование и профессиональную карьеру.

Предметные результаты освоения содержания модуля «Робототехника»

К концу обучения в 9 классе:

характеризовать автоматизированные и роботизированные производственные линии;

анализировать перспективы развития робототехники;

характеризовать мир профессий, связанных с робототехникой, их востребованность на рынке труда;

характеризовать принципы работы системы интернет вещей; сферы применения системы интернет вещей в промышленности и быту;

реализовывать полный цикл создания робота;

конструировать и моделировать робототехнические системы с использованием материальных конструкторов с компьютерным управлением и обратной связью;

использовать визуальный язык для программирования простых робототехнических систем;

составлять алгоритмы и программы по управлению робототехническими системами; самостоятельно осуществлять робототехнические проекты.

Предметные результаты освоения содержания **модуля** «**Компьютерная графика**. **Черчение**»

К концу обучения в 9 классе:

выполнять эскизы, схемы, чертежи с использованием чертёжных инструментов и приспособлений и (или) в системе автоматизированного проектирования (САПР);

создавать 3D-модели в системе автоматизированного проектирования (САПР);

оформлять конструкторскую документацию, в том числе с использованием систем автоматизированного проектирования (САПР);

характеризовать мир профессий, связанных с изучаемыми технологиями, их востребованность на рынке труда.

Предметные результаты освоения содержания **модуля «3D-моделирование, прототипирование, макетирование»**

К концу обучения в 9 классе:

использовать редактор компьютерного трёхмерного проектирования для создания моделей сложных объектов;

изготавливать прототипы с использованием технологического оборудования (3D-принтер, лазерный гравёр и другие);

называть и выполнять этапы аддитивного производства;

модернизировать прототип в соответствии с поставленной задачей;

называть области применения 3D-моделирования;

характеризовать мир профессий, связанных с изучаемыми технологиями 3D-моделирования, их востребованность на рынке труда.

Предметные результаты освоения содержания вариативного **модуля** «Автоматизированные системы»

К концу обучения в 8-9 классах:

называть признаки автоматизированных систем, их виды;

называть принципы управления технологическими процессами;

характеризовать управляющие и управляемые системы, функции обратной связи;

осуществлять управление учебными техническими системами;

конструировать автоматизированные системы;

называть основные электрические устройства и их функции для создания автоматизированных систем;

объяснять принцип сборки электрических схем;

выполнять сборку электрических схем с использованием электрических устройств и систем;

определять результат работы электрической схемы при использовании различных элементов;

осуществлять программирование автоматизированных систем на основе использования программированных логических реле;

разрабатывать проекты автоматизированных систем, направленных на эффективное управление технологическими процессами на производстве и в быту;

характеризовать мир профессий, связанных с автоматизированными системами, их востребованность на региональном рынке труда.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 9 КЛАСС (ИНВАРИАНТНЫЕ МОДУЛИ)

N₂	те (инвагиантные модули)	Количес	тво часоі	21107			
п/п	Наименование разделов и тем программы	Всего	К/р	П/р	ЭЦОР		
Раздел	Раздел 1. Производство и технологии						
1.1	Предпринимательство. Организация собственного производства	2					
1.2	Моделирование экономической деятельности	2					
1.3	Технологическое предпринимательство	1					
Итого	по разделу	5					
Раздел	2. Компьютерная графика. Черчение						
2.1	Технология построения объёмных моделей и чертежей в САПР	2		1			
2.2	Способы построения разрезов и сечений в САПР	2					
Итого	Итого по разделу						
Раздел	3. 3D-моделирование, прототипирование, макетирование						
3.1	Аддитивные технологии. Создание моделей, сложных объектов	7					
3.2	Основы проектной деятельности	3					
3.3	Профессии, связанные с 3D-технологиями	1					
Итого по разделу		11					
Раздел	14. Робототехника						
4.1	От робототехники к искусственному интеллекту	1					
4.2	Система «Интернет вещей»	2		1			
4.3	Промышленный Интернет вещей	2		1			
4.4	Потребительский Интернет вещей	2		1			
4.5	Основы проектной деятельности	5					
4.6	Современные профессии	2	1				
Итого	по разделу	14					

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34	1	4	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ. 9 КЛАСС 9 КЛАСС (ИНВАРИАНТНЫЕ МОДУЛИ)

№ п/п	Тема урока	Количество часов			Дата	OHOD
		Всего	K/p	П/р	изучения	ЭЦОР
1	Инструктаж по ТБ. Предприниматель и предпринимательство	1			1.09	
2	Предпринимательская деятельность	1			8.09	
3	Модель реализации бизнес-идеи	1			15.09	
4	Бизнес-план. Этапы разработки бизнес-проекта	1			22.09	
5	Технологическое предпринимательство	1			29.09	
6	Технология создания объемных моделей в САПР	1			6.10	
7	Практическая работа №1 «Выполнение трехмерной объемной модели изделия в САПР»	1		1	13.10	
8	Построение чертежей с использованием разрезов и сечений в САПР	1			20.10	
9	Построение чертежей с использованием разрезов и сечений в САПР	1			27.10	
10	Аддитивные технологии	1			10.11	
11	Аддитивные технологии. Области применения трёхмерной печати	1			17.11	
12	Создание моделей, сложных объектов	1			24.11	
13	Создание моделей, сложных объектов	1			1.12	
14	Создание моделей, сложных объектов	1			8.12	
15	Этапы аддитивного производства	1			15.12	
16	Этапы аддитивного производства. Подготовка к печати. Печать 3D- модели	1			22.12	
17	Инструктаж по ТБ. Основы проектной деятельности. Разработка проекта	1			29.12	
18	Основы проектной деятельности. Подготовка проекта к защите	1			12.01	
19	Основы проектной деятельности. Защита проекта	1			19.01	
20	Профессии, связанные с 3D-технологиями в современном производстве	1			26.01	
21	От робототехники к искусственному интеллекту	1			2.02	

22	Система «Интернет вещей». Классификация Интернета вещей.	1			9.02	
23	Система «Интернет вещей». Практическая работа №2 «Создание системы умного освещения»	1		1	16.02	
24	Промышленный Интернет вещей	1			1.03	
25	Промышленный Интернет вещей. Практическая работа №3 «Система умного полива»	1		1	15.03	
26	Потребительский Интернет вещей	1			22.03	
27	Потребительский Интернет вещей. Практическая работа №4«Модель системы безопасности в Умном доме»	1		1	5.04	
28	Основы проектной деятельности	1			12.04	
29	Основы проектной деятельности. Разработка проекта	1			19.04	
30	Основы проектной деятельности. Разработка проекта	1			26.04	
31	Основы проектной деятельности. Подготовка проекта к защите	1			3.05	
32	Основы проектной деятельности. Презентация и защита проекта	1			10.05	
33	Итоговая контрольная работа. Современные профессии в области робототехники	1	1		17.05	
34	Профессии, связанные с Интернетом вещей, технологиями виртуальной реальности	1			24.05	
ОБЩ	ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		1	4		

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

Казакевич В.М., Пичугина Г.В., Семёнова Г.Ю. и др.; под ред. Казакевича В.М. 9 класс **МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ**

- 1. Предметная линия учебников В. М. Казакевича и др. 5–9 классы» можно на сайте акционерного общества издательства «Просвещение» https://catalog.prosv.ru/item/9618
- 2. Линия УМК «Технология», авторов Глозмана А.Е., Кожиной О.А., Хотунцева Ю.Л. и др. : Рабочая программа https://rosuchebnik.ru/material/tekhnologiya-5-9-klassyrabochaya-programma/
- 3. К модулю «Компьютерная графика и черчение» предлагается два учебника:
- 4. 4.1. Линия УМК. Ботвинников А. Д., Виноградов В. Н., Вышнепольский И. С.
- 5. Рабочая программа: https://rosuchebnik.ru/material/cherchenie-9-klassrabochaya-programma/
- 6. 4.2. Линия УМК. Преображенская Н. Г., Кодукова И. В.
- 7. Рабочая программа: https://rosuchebnik.ru/material/cherchenie-9-klass-rabochayaprogramma-prejbrazhensky/
- 8. Методическое пособие: https://rosuchebnik.ru/material/n-gpreobrazhenskaya-cherchenie-9-klass-metodicheskoe-posobie/